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Abstract
Two families of series with terms involving spherical spinors (spinor spherical
harmonics) for a spin one-half particle,

�±(κ;n,n′) =
∞∑

�=−∞
(� �=0)

|�|−1/2∑
µ=−|�|+1/2

�±�µ(n)�†
�µ(n′)

� − κ
(κ �= ±1,±2, . . .)

and

�̄±(k;n,n′) =
∞∑

�=−∞
(� �=0,k)

|�|−1/2∑
µ=−|�|+1/2

�±�µ(n)�†
�µ(n′)

� − k
(k = ±1,±2, . . .),

are summed to closed forms involving the Legendre function of the first kind
and its derivatives with respect to an argument and/or an index. In particular,
it is shown that the closed forms of the series �±(0;n,n′) are remarkably
simple:

�+(0;n,n′) = − 1

4π
I +

i

4π

n × n′

1 − n ·n′ · σ

and

�−(0;n,n′) = 1

4π

n − n′

1 − n · n′ · σ

with I denoting the 2 × 2 unit matrix and σ standing for the vector of Pauli
matrices. Integral eigenvalue equations solved by the spherical spinors, with
either �+(κ;n,n′) or �̄+(k;n,n′) as kernels, are provided. It is pointed out
that �+(κ;n,n′) is the Green function of the operator −σ ·Λ− (κ + 1)I, (κ �=
±1,±2, . . .), while �̄+(k;n,n′) is the generalized (reduced) Green function
of the operator −σ ·Λ − (k + 1)I, (k = ±1,±2, . . .), with Λ = −ir × ∇.
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1. Introduction

Spherical spinors (sometimes also called ‘spinor spherical harmonics’) for spin one-half
particles, denoted hereafter as {��µ(n)}, emerge in relativistic quantum mechanics in the
context of the separation of the Dirac equation in spherical polar coordinates. They play
here the role analogous to that which in the theory of spinless particles is played by the
scalar spherical harmonics {Ylm(n)}. Still, papers devoted to systematic investigations of the
properties of the spherical spinors have been only occasional. As a result, much less is known
about these objects than about the spherical harmonics (cf, e.g., [1–5]). With an intention
to make a small step towards changing this unsatisfactory situation, in the present work we
contribute to the theory of series with terms involving the spherical spinors. Specifically, we
consider two families of series,

�±(κ;n,n′) =
∞∑

�=−∞
(� �=0)

|�|−1/2∑
µ=−|�|+1/2

�±�µ(n)�†
�µ(n′)

� − κ
(κ �= ±1,±2, . . .) (1.1)

and

�̄±(k;n,n′) =
∞∑

�=−∞
(� �=0,k)

|�|−1/2∑
µ=−|�|+1/2

�±�µ(n)�†
�µ(n′)

� − k
(k = ±1,±2, . . .) (1.2)

(the dagger denotes the Hermitian conjugation), and show that they may be summed to closed
forms involving the Legendre function of the first kind and derivatives of the latter with respect
to an argument and/or an index. The importance of the series �+(κ;n,n′) and �̄+(k;n,n′)
lies in that, as we shall show below, they are, respectively, a Green function and a generalized
Green function of some partial differential operators on the unit sphere. In addition, these two
series are kernels in the integral eigenvalue equations

��µ(n) = (� − κ)

∮
4π

d2n′ �+(κ;n,n′)��µ(n′) (κ �= ±1,±2, . . .) (1.3)

and

��µ(n) = (� − k)

∮
4π

d2n′ �̄+(k;n,n′)��µ(n′) (� �= k = ±1,±2, . . .) (1.4)

obeyed by the spherical spinors.
Definitions and these properties of the spherical spinors, the spherical harmonics and

the Legendre functions of the first kind (as well as of the Legendre polynomials), which are
of relevance for the present work, are given in appendices A, B and C, respectively. The
constraints imposed on κ and k in equations (1.1) and (1.2), respectively, will be assumed to
hold throughout the paper.

2. Preliminaries

2.1. Definitions

We shall use the symbols nx , ny,nz to denote the Cartesian versors, while the symbols n0

and n±1 will denote the spherical versors, related to the former through

n0 = nz n±1 = ∓ 1√
2
(nx ± iny). (2.1)

The symbol n will stand for the real unit vector pointing in the direction characterized in
the spherical coordinate system (with its polar and azimuthal axes directed along nz and
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nx , respectively) by the polar angle θ (with 0 � θ � π ) and the azimuthal angle ϕ (with
0 � ϕ < 2π ); analogously, the real unit vector n′ will be characterized by the angles θ ′

and ϕ′.
We shall use the symbol σ to mark the Pauli vector

σ = σxnx + σyny + σznz (2.2)

with

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (2.3)

The symbol I will denote the 2 × 2 unit matrix. A useful relation is

(n · σ)(n′ · σ) = n · n′I + i(n × n′) · σ. (2.4)

The dimensionless orbital angular momentum operator is defined as

Λ = −ir × ∇, (2.5)

where r = rn and ∇ = ∂/∂r. The relationship

Λf (n · n′) = −if ′(n ·n′)(n × n′) (2.6)

holds for an arbitrary differentiable scalar function f (ξ). (Throughout the paper, the prime at
a scalar function denotes its first derivative with respect to an argument.)

2.2. Some properties of the series (1.1) and (1.2)

The series (1.1) and (1.2) possess some properties which we shall find useful in the
considerations carried out in section 4.

Consider at first the series in equation (1.1). Premultiplying both sides of this equation
with −n · σ and exploiting relation (A.8), one has

�∓(κ;n,n′) = −n · σ�±(κ;n,n′). (2.7)

In the similar way, one finds that

�±(−κ;n,n′) = �∓(κ;n,n′)n′ · σ. (2.8)

On combining these two results, one arrives at the reflection property

�±(−κ;n,n′) = −n · σ�±(κ;n,n′)n′ · σ. (2.9)

With no difficulty, one may show that the relations analogous to those in equations (2.7)–
(2.9) hold for the series (1.2):

�̄∓(k;n,n′) = −n · σ�̄±(k;n,n′) (2.10)

�̄±(−k;n,n′) = �̄∓(k;n,n′)n′ · σ (2.11)

�̄±(−k;n,n′) = −n · σ�̄±(k;n,n′)n′ · σ. (2.12)

2.3. The series �+(κ;n,n′) and �̄+(k;n,n′) as Green functions

Finally, we shall validate the statement, made in the introduction, that the functions
�+(κ;n,n′) and �̄+(k;n,n′) are, respectively, a Green function and a generalized Green
function of some partial differential operators.



8996 R Szmytkowski

Consider the series representing the function �+(κ;n,n′). Acting on it with the operator
−σ ·Λ − (κ + 1)I , after exploiting the eigenvalue equation (A.7), we have

[−σ ·Λ − (κ + 1)I ]�+(κ;n,n′) =
∞∑

�=−∞
(� �=0)

|�|−1/2∑
µ=−|�|+1/2

��µ(n)�†
�µ(n′). (2.13)

The series on the right-hand side of the above equation is just this one which appears in the
closure relation (A.6), so that equation (2.13) may be rewritten as

[−σ ·Λ − (κ + 1)I ]�+(κ;n,n′) = δ(2)(n − n′)I. (2.14)

From this, we infer that �+(κ;n,n′) is the Green function of the operator −σ ·Λ − (κ + 1)I

(with the constraints of differentiability, finiteness and single-valuedness imposed on functions
from its domain).

Next, we turn to the series representing the function �̄+(k;n,n′). Proceeding as above
in the case of �+(κ;n,n′), we find that �̄+(k;n,n′) obeys the inhomogeneous differential
equation

[−σ ·Λ − (k + 1)I ]�̄+(k;n,n′) = δ(2)(n − n′)I −
|k|−1/2∑

µ=−|k|+1/2

�kµ(n)�
†
kµ(n′). (2.15)

Moreover, it is evident from equations (1.2) and (A.3) that �̄+(k;n,n′) is orthogonal to the
null space of the operator −σ ·Λ − (k + 1)I :∮

4π

d2n �
†
kµ(n)�̄+(k;n,n′) = 0

(
µ = −|k| +

1

2
, . . . , |k| − 1

2

)
. (2.16)

Consequently, one recognizes in �̄+(k;n,n′) the generalized (or reduced) Green function of
the operator −σ ·Λ−(k+1)I (again, with the differentiability, finiteness and single-valuedness
conditions imposed on functions from its domain).

3. Auxiliary finite sums involving spherical spinors

Before proceeding to summing the series (1.1) and (1.2), in this section we shall consider two
auxiliary finite sums:

��±(n,n′) =
|�|−1/2∑

µ=−|�|+1/2

�±�µ(n)�†
�µ(n′). (3.1)

A method of finding closed expressions for these sums was presented by Bechler [6] (see also
[7]). Here, we shall discuss an approach somewhat different from that in [6]; as a by-product,
our considerations will yield an intermediate formula which we shall find useful in section 4.

We begin with observing that, because of the property (A.8), the sums ��+(n,n′) and
��−(n,n′) are related through

��−(n,n′) = −n · σ��+(n,n′). (3.2)

Therefore, in what follows we shall focus primarily on the sum ��+(n,n′).
It follows from equations (3.1) and (A.1) that ��+(n,n′) has the following matrix

structure,

��+(n,n′) =
(

K
(−)
�+ (n,n′) L

(−)
�+ (n,n′)

L
(+)
�+ (n,n′) K

(+)
�+ (n,n′)

)
(3.3)
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where

K(±)
�+ (n,n′) = 1

2� + 1

|�|−1/2∑
µ=−|�|+1/2

(
� +

1

2
± µ

)
Yl,µ±1/2(n)Y ∗

l,µ±1/2(n
′)

= 1

2� + 1

l∑
m=−l

(� ± m)Ylm(n)Y ∗
lm(n′) (3.4)

and

L(±)
�+ (n,n′) = − 1

2� + 1

|�|−1/2∑
µ=−|�|+1/2

√(
� +

1

2

)2

− µ2Yl,µ±1/2(n)Y ∗
l,µ∓1/2(n

′)

= − 1

2� + 1

l∑
m=−l

√
(l ∓ m)(l ± m + 1)Yl,m±1(n)Y ∗

lm(n′). (3.5)

It should be noted that

L(−)
�+ (n,n′) = L(+)∗

�+ (n′,n). (3.6)

Exploiting the properties (B.4) and (B.5) of the spherical harmonics, we rewrite equations (3.4)
and (3.5) in the forms

K(±)
�+ (n,n′) = � ± n0 ·Λ

2� + 1

l∑
m=−l

Ylm(n)Y ∗
lm(n′) (3.7)

L(±)
�+ (n,n′) = ±

√
2

2� + 1
n±1 ·Λ

l∑
m=−l

Ylm(n)Y ∗
lm(n′) (3.8)

which, after employing the summation formula (B.6), reduce to

K(±)
�+ (n,n′) = |�| ± sgn(�)n0 ·Λ

4π
Pl(n · n′) (3.9)

L(±)
�+ (n,n′) = ± sgn(�)

4π

√
2n±1 ·ΛPl(n · n′), (3.10)

where Pl(ξ) is the Legendre polynomial. On inserting the results (3.9) and (3.10) into the
right-hand side of equation (3.3) and making use of the definitions (2.1)–(2.3), one arrives at

��+(n,n′) = |�|I − sgn(�)σ ·Λ
4π

Pl(n ·n′) (3.11)

(this particular intermediate form of the sum ��+(n,n′) will play a crucial role in section 4),
which after making use of the differential relationship (2.6) becomes

��+(n,n′) = |�|
4π

Pl(n · n′)I + i
sgn(�)

4π
P ′

l (n · n′)(n × n′) · σ. (3.12)

We have already mentioned that the same representation of ��+(n,n′) was derived, in a
somewhat different way, in [6]. An alternative form of the sum (3.1)

��+(n,n′) = − sgn(�)

4π
P ′

l−sgn(�)(n · n′)I +
sgn(�)

4π
P ′

l (n · n′)(n · σ)(n′ · σ) (3.13)

given in [7] may be obtained from equation (3.12) by transforming the latter with the aid of
the matrix identity (2.4) and the recurrence relations (C.5) and (C.6) (both with λ = l).



8998 R Szmytkowski

The closed form of the sum ��−(n,n′), following from equations (3.2) and (3.13), is

��−(n,n′) = sgn(�)

4π
[P ′

l−sgn(�)(n · n′)n − P ′
l (n ·n′)n′] · σ. (3.14)

4. Summation of the series (1.1) and (1.2)

Having made the above preparatory steps, in this section we shall concentrate on the main
problem of this work, i.e., on summing the series (1.1) and (1.2).

4.1. Summation of the series (1.1)

Consider the series (1.1). On applying equation (3.1), they may be rewritten as

�±(κ;n,n′) =
∞∑

�=−∞
(� �=0)

��±(n,n′)
� − κ

(κ �= ±1,±2, . . .). (4.1)

Since �−(κ;n,n′) is related to �+(κ;n,n′) via equation (2.7), below we shall present in
detail the procedure of summing �+(κ;n,n′); for �−(κ;n,n′), we shall provide only the
final result.

To sum the series �+(κ;n,n′), we observe that, after making use of the result (3.11),
equation (4.1), specified to this particular case, may be rewritten in the form

�+(κ;n,n′) = 1

4π

∞∑
�=−∞
(� �=0)

|�|I − sgn(�)σ ·Λ
� − κ

Pl(n ·n′) (4.2)

with l defined in equation (A.2). Changing the summation index from � to l and employing
relation (2.6) transforms equation (4.2) into

�+(κ;n,n′) = 1

4π
A+(κ;n · n′)I +

i

4π
B ′

+(κ;n ·n′)(n × n′) · σ (4.3)

with

A+(κ; ξ) = κ

∞∑
l=0

2l + 1

(l − κ)(l + κ + 1)
Pl(ξ) (4.4)

B ′
+(κ; ξ) =

∞∑
l=1

2l + 1

(l − κ)(l + κ + 1)
P ′

l (ξ ). (4.5)

Applying the summation formula (C.23) to the right-hand sides of equations (4.4) and (4.5)
yields

A+(κ; ξ) = − πκ

sin(πκ)
Pκ(−ξ) (4.6)

B ′
+(κ; ξ) = π

sin(πκ)
P ′

κ(−ξ) (4.7)

where Pκ(ξ) is the Legendre function of the first kind, defined in equation (C.1). Substituting
these two results into equation (4.3), we find

�+(κ;n,n′) = − κ

4 sin(πκ)
Pκ(−n · n′)I

+
i

4 sin(πκ)
P ′

κ(−n ·n′)(n × n′) · σ (κ �= ±1,±2, . . .). (4.8)
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It is worthwhile observing that from equation (4.8) and property (C.3) one may deduce that

�+(−κ − 1;n,n′) = 2κ + 1

4 sin(πκ)
Pκ(−n ·n′)I + �+(κ;n,n′). (4.9)

The case κ = 0 requires a more thorough investigation. One has

A+(0; ξ) = −1 (4.10)

and

B ′
+(0; ξ) = lim

κ→0

P ′
κ(−ξ)

κ
. (4.11)

However, it is evident that

lim
κ→0

P ′
κ(−ξ)

κ
= ∂P ′

κ(−ξ)

∂κ

∣∣∣∣
κ=0

(4.12)

and in appendix C it is shown that
∂P ′

κ(ξ)

∂κ

∣∣∣∣
κ=0

= 1

1 + ξ
. (4.13)

Consequently, we have

B ′
+(0; ξ) = 1

1 − ξ
(4.14)

and from equations (4.3), (4.10) and (4.14) we derive the remarkably simple result

�+(0;n,n′) = − 1

4π
I +

i

4π

n × n′

1 − n ·n′ · σ. (4.15)

From this it follows that for κ = 0 the integral eigenvalue equation (1.3) becomes

(1 − δ�,−1)��µ(n) = i
�

4π

∮
4π

d2n′ n × n′

1 − n · n′ · σ��µ(n′). (4.16)

(Parenthetically, we note that one might arrive at equation (4.14) following a route alternative
to that presented above. Indeed, from equations (2.9), (4.3) and (2.4), one infers that

A+(−κ; ξ) = −ξA+(κ; ξ) − (1 − ξ 2)B ′
+(κ; ξ) (4.17)

B ′
+(−κ; ξ) = −A+(κ; ξ) + ξB ′

+(κ; ξ). (4.18)

In the particular case κ = 0, either of equations (4.17) or (4.18) yields

B ′
+(0; ξ) = −A+(0; ξ)

1 − ξ
. (4.19)

Hence, after employing relation (4.10), equation (4.14) follows again.)
The closed form of the sum �−(κ;n,n′) may be obtained on combining equations (2.7)

and (4.8) and then simplifying the result with the aid of the property (C.5); this yields

�−(κ;n,n′) = − 1

4 sin(πκ)
[P ′

κ−1(−n · n′)n + P ′
κ(−n ·n′)n′] · σ

= − 1

4 sin(πκ)
[P ′

−κ(−n ·n′)n + P ′
κ(−n · n′)n′] · σ (κ �= ±1,±2, . . .)

(4.20)

where the second equality in the above equation follows from relation (C.3). From this, one
infers the general relationship

�−(−κ;n,n′) = −�−(κ;n′,n) (4.21)

supplementing these in equations (2.7)–(2.9). Finally, it stems from equations (2.7) and (4.15),
and also from equations (4.20) and (4.13), that �−(0;n,n′) has the particularly simple form

�−(0;n,n′) = 1

4π

n − n′

1 − n · n′ · σ. (4.22)
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4.2. Summation of the series (1.2)

We turn to the series (1.2) which, with the aid of equation (3.1), may be rewritten in the form

�̄±(k;n,n′) =
∞∑

�=−∞
(� �=0,k)

��±(n,n′)
� − k

(k = ±1,±2, . . .). (4.23)

Because of the property (2.10), we shall focus here on �̄+(k;n,n′), providing for �̄−(k;n,n′)
the final result only.

To sum the series �̄+(k;n,n′), we observe that it is related to the series �+(κ;n,n′),
considered in the preceding subsection, through

�̄+(k;n,n′) = lim
κ→k

∂

∂κ
[(κ − k)�+(κ;n,n′)]. (4.24)

After combining equation (4.24) with equation (4.8) and exploiting the l’Hospital rule, we
have

�̄+(k;n,n′) = 1

4π
Ā+(k;n · n′)I +

i

4π
B̄ ′

+(k;n · n′)(n × n′) · σ (4.25)

where

Ā+(k; ξ) = (−)k+1Pk(−ξ) + (−)k+1k
∂Pκ(−ξ)

∂κ

∣∣∣∣
κ=k

(4.26)

B̄ ′
+(k; ξ) = (−)k

∂P ′
κ(−ξ)

∂κ

∣∣∣∣
κ=k

. (4.27)

With the aid of the relations (2.12) and (2.4), from equation (4.25) one may deduce that the
coefficients (4.26) and (4.27) obey

Ā+(−k; ξ) = −ξĀ+(k; ξ) − (1 − ξ 2)B̄ ′
+(k; ξ) (4.28)

B̄ ′
+(−k; ξ) = −Ā+(k; ξ) + ξB̄ ′

+(k; ξ) (4.29)

(cf equations (4.17) and (4.18)).
The following compact closed form of �̄−(k;n,n′)

�̄−(k;n,n′) = 1

4π
[B̄ ′

+(−k;n · n′)n − B̄ ′
+(k;n ·n′)n′] · σ (4.30)

results from combining equations (2.10) and (4.25) with the relation (4.29). From
equation (4.30), the property

�̄−(−k;n,n′) = −�̄−(k;n′,n) (4.31)

(cf equation (4.21)) follows immediately.
We provide some examples. If k = −1, then from equations (4.25)–(4.27), (C.11) and

(C.19) one finds that �̄+(−1;n,n′), i.e., the generalized Green function for the operator
−σ ·Λ, is

�̄+(−1;n,n′) = 1

4π

(
ln

1 − n ·n′

2
+ 1

)
I +

i

4π

n × n′

1 − n · n′ · σ. (4.32)

The counterpart expression for �̄−(−1;n,n′), resulting for instance from equations (2.10),
(4.32) and (2.4), is

�̄−(−1;n,n′) = − 1

4π

[(
ln

1 − n · n′

2
+

1 − 2n · n′

1 − n ·n′

)
n +

n′

1 − n · n′

]
· σ. (4.33)
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If k = +1, then either from equations (4.25)–(4.27), (C.17) and (C.20), or, alternatively, from
equations (2.12), (4.32) and (2.4), one deduces that the closed form of �̄+(+1;n,n′), i.e., of
the generalized Green function for the operator −σ ·Λ − 2I , is given by

�̄+(+1;n,n′) = − 1

4π

(
n ·n′ ln

1 − n ·n′

2
+ 2n · n′ + 1

)
I

− i

4π

(
ln

1 − n · n′

2
+

1 − 2n ·n′

1 − n ·n′

)
(n × n′) · σ. (4.34)

The closed representation of the related sum �̄−(+1;n,n′) is

�̄−(+1;n,n′) = 1

4π

[
n

1 − n ·n′ +

(
ln

1 − n · n′

2
+

1 − 2n ·n′

1 − n ·n′

)
n′

]
· σ, (4.35)

as may be inferred, for instance, from equations (4.31) and (4.33).

Appendix A. Spherical spinors

Spherical spinors are defined as two-component objects, expressed in terms of the spherical
harmonics (cf appendix B) in the following way:

��µ(n) =


sgn(−�)

√
�+ 1

2 −µ

2�+1 Yl,µ−1/2(n)√
�+ 1

2 +µ

2�+1 Yl,µ+1/2(n)


 (A.1)

where � = ±1,±2, . . . , µ = −|�| + 1
2 ,−|�| + 3

2 , . . . , |�| − 1
2 , and

l ≡ l(�) = ∣∣� + 1
2

∣∣ − 1
2 =

{−� − 1 for � < 0
� for � > 0.

(A.2)

The spherical spinors are orthonormal on the unit sphere in the sense of∮
4π

d2n �†
�µ(n)�� ′µ′(n) = δ�� ′δµµ′ . (A.3)

The following summation formula holds,
∞∑

�=−∞
(� �=0)

|�|−1/2∑
µ=−|�|+1/2

��µ(n)�†
�µ(n′) = π−1δ(1 − n ·n′)I, (A.4)

where δ(ξ) is the Dirac delta function1. The factor in front of the unit matrix on the right-hand
side of the above equation may be interpreted as the two-dimensional Dirac delta function on
the unit sphere,

π−1δ(1 − n · n′) = δ(2)(n − n′), (A.5)

so that one has
∞∑

�=−∞
(� �=0)

|�|−1/2∑
µ=−|�|+1/2

��µ(n)�†
�µ(n′) = δ(2)(n − n′)I. (A.6)

1 To avoid misunderstandings, we emphasize that in this paper we adopt this definition of the one-dimensional Dirac
delta function, according to which for any test function f (ξ) it holds that∫ ξ1

ξ0

dξ δ(ξ − ξ1)f (ξ) = 1

2
f (ξ1) (ξ0 < ξ1).
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Equations (A.4) and (A.6) are alternative forms of the closure (completeness) relation for the
spherical spinors.

The spherical spinors {��µ(n)} are eigenfunctions of the matrix differential operator
σ ·Λ, associated with the 2|�|-fold degenerate (with respect to µ) eigenvalues {−� − 1}:

σ ·Λ��µ(n) = −(� + 1)��µ(n). (A.7)

In several places in the main text, the following property has been used:

n · σ��µ(n) = −�−�µ(n). (A.8)

An overview of other properties of spherical spinors may be found in [4].

Appendix B. Spherical harmonics

The spherical harmonics used throughout this paper are defined as

Ylm(n) =
√

2l + 1

4π

(l − m)!

(l + m)!
P m

l (cos θ) eimϕ (B.1)

with l = 0, 1, 2, . . . , m = −l,−l + 1, . . . , l, and with P m
l (ξ) being the associated Legendre

function:

P m
l (ξ) = (−)m

2l l!
(1 − ξ 2)m/2 dl+m(ξ 2 − 1)l

dξ l+m
(−1 � ξ � 1). (B.2)

Definitions (B.1) and (B.2) conform to the Condon–Shortley phase convention [8]. The
harmonics (B.1) form an orthonormal set on the unit sphere:∮

4π

d2n Y ∗
lm(n)Yl′m′(n) = δll′δmm′ . (B.3)

They obey the differential relations

n0 ·ΛYlm(n) = mYlm(n) (B.4)

∓
√

2n±1 ·ΛYlm(n) =
√

(l ∓ m)(l ± m + 1)Yl,m±1(n) (B.5)

and satisfy the following so-called addition theorem:

l∑
m=−l

Ylm(n)Y ∗
lm(n′) = 2l + 1

4π
Pl(n · n′). (B.6)

The relationship

∞∑
l=0

l∑
m=−l

Ylm(n)Y ∗
lm(n′) = δ(2)(n − n′) (B.7)

(with δ(2)(n−n′) to be understood in the sense of equation (A.5)) expressess the completeness
of the spherical harmonics in the space of single-valued square integrable functions on the
unit sphere; it is the counterpart of the relation (A.6).
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Appendix C. Legendre functions of the first kind and Legendre polynomials

In this appendix, we list these well-known (and derive these less-known) properties of the
Legendre functions of the first kind and the Legendre polynomials, which have been helpful
in the considerations carried out in sections 3 and, especially, 4.

The Legendre function of the first kind is defined as

Pλ(ξ) = 2F1

(
−λ, λ + 1; 1; 1 − ξ

2

)
=

∞∑
n=0

(−λ)n(λ + 1)n

(n!)2

(
1 − ξ

2

)n

(−1 � ξ � 1)

(C.1)

where

(ζ )n = �(ζ + n)

�(ζ )
(C.2)

is the Pochhammer symbol [9]; the constraint imposed on ξ in equation (C.1) will be assumed
to hold throughout the rest of this appendix. The function (C.1) possesses the evident property

P−λ−1(ξ) = Pλ(ξ) (C.3)

and satisfies the homogeneous recurrence relation

(λ + 1)Pλ+1(ξ) − (2λ + 1)ξPλ(ξ) + λPλ−1(ξ) = 0 (C.4)

as well as the differential relations

ξP ′
λ(ξ) − λPλ(ξ) = P ′

λ−1(ξ) (C.5)

ξP ′
λ(ξ) + (λ + 1)Pλ(ξ) = P ′

λ+1(ξ). (C.6)

The derivative of the Legendre function with respect to its index, obtained by
differentiating equation (C.1) and exploiting the definition and some properties of the digamma
function [9]

ψ(ζ ) = 1

�(ζ )

d�(ζ )

dζ
(C.7)

is found to be

∂Pλ(ξ)

∂λ
=

∞∑
n=1

(−λ)n(λ + 1)n

(n!)2
[ψ(λ + 1 + n) − ψ(λ + 1 − n)]

(
1 − ξ

2

)n

. (C.8)

It follows from equation (C.3) that

∂Pλ′(ξ)

∂λ′

∣∣∣∣
λ′=−λ−1

= −∂Pλ′(ξ)

∂λ′

∣∣∣∣
λ′=λ

. (C.9)

In the particular case λ = 0, the series on the right-hand side of equation (C.8) simplifies and
one has

∂Pλ(ξ)

∂λ

∣∣∣∣
λ=0

= −
∞∑

n=1

1

n

(
1 − ξ

2

)n

= ln
1 + ξ

2
. (C.10)

Combining this with the relation (C.9) gives

∂Pλ(ξ)

∂λ

∣∣∣∣
λ=−1

= −ln
1 + ξ

2
. (C.11)
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Differentiating the relation (C.4) with respect to λ yields the inhomogeneous recurrence
relation for the function (C.8):

(λ + 1)
∂Pλ+1(ξ)

∂λ
− (2λ + 1)ξ

∂Pλ(ξ)

∂λ
+ λ

∂Pλ−1(ξ)

∂λ
= −Pλ+1(ξ) + 2ξPλ(ξ) − Pλ−1(ξ).

(C.12)

From this and from equations (C.10) and (C.11), it may be inferred that

∂Pλ(ξ)

∂λ

∣∣∣∣
λ=l

= sgn

(
l +

1

2

)
Pl(ξ) ln

1 + ξ

2
+ Wl(ξ) (l = 0,±1,±2, . . .) (C.13)

where the polynomials Wl(ξ) satisfy

(l + 1)Wl+1(ξ) − (2l + 1)ξWl(ξ) + lWl−1(ξ) = −Pl+1(ξ) + 2ξPl(ξ) − Pl−1(ξ) (C.14)

with the initial conditions

W0(ξ) = 0 W−1(ξ) = 0. (C.15)

It holds that

W−l−1(ξ) = −Wl(ξ). (C.16)

In particular, from equations (C.13)–(C.16) one has

∂Pλ(ξ)

∂λ

∣∣∣∣
λ=1

= −∂Pλ(ξ)

∂λ

∣∣∣∣
λ=−2

= ξ ln
1 + ξ

2
+ ξ − 1. (C.17)

It stems from equation (C.13) that

∂P ′
λ(ξ)

∂λ

∣∣∣∣
λ=l

= sgn

(
l +

1

2

)
P ′

l (ξ ) ln
1 + ξ

2
+ sgn

(
l +

1

2

)
Pl(ξ)

1 + ξ
+ W ′

l (ξ ). (C.18)

In particular, it holds that

∂P ′
λ(ξ)

∂λ

∣∣∣∣
λ=0

= −∂P ′
λ(ξ)

∂λ

∣∣∣∣
λ=−1

= 1

1 + ξ
(C.19)

∂P ′
λ(ξ)

∂λ

∣∣∣∣
λ=1

= −∂P ′
λ(ξ)

∂λ

∣∣∣∣
λ=−2

= ln
1 + ξ

2
+

1 + 2ξ

1 + ξ
. (C.20)

For λ = l = 0,±1,±2, . . . the Legendre function (C.1) degenerates to the Legendre
polynomial

Pl(ξ) = 1

2l l!

dl (ξ 2 − 1)l

dξ l
(l = 0, 1, 2, . . .) (C.21)

P−l−1(ξ) = Pl(ξ) (l = 0, 1, 2, . . .). (C.22)
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The following summation formula [10, 11] for the Legendre polynomials,
∞∑
l=0

(2l + 1)Pl(ξ)

(l − λ)(l + λ + 1)
= − π

sin(πλ)
Pλ(−ξ) (−1 � ξ � 1; λ �= 0,±1,±2, . . .),

(C.23)

has played the crucial role in passing from equation (4.3) to equation (4.8).
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